2002 Vol. 4, No. 19 3179-3182

S_N1-like Reactions of Bicyclic α-Amino Ethers with Sulfur, Nitrogen, and Carbon Nucleophiles. Synthesis of 1-Azabicyclo[3.2.2]nonanes Functionalized at Carbon C2 and C6 with Complete Stereocontrol

Stefanie Röper, † Rudolf Wartchow, † and H. Martin R. Hoffmann*, †

Department of Organic Chemistry, University of Hannover, Schneiderberg 1B, D-30167 Hannover, Germany, and Department of Inorganic Chemistry, University of Hannover, Callinstr. 9, D-30167 Hannover, Germany

hoffmann@mbox.oci.uni-hannover.de

Received June 11, 2002

ABSTRACT

In the presence of nucleophiles, Lewis acid mediated cleavage of α -amino ethers derived from quincorine and quincoridine affords a variety of C2-substituted and C6-vinylated 1-azabicyclo[3.2.2]nonanes. These are enantiopure and are formed in S_N 1-like reactions with complete stereocontrol. There is no leakage into 2-Nu en route to product 1-Nu or vice versa. Me₃SiCN provides new Strecker-type α -amino nitriles. In the presence of TTMPP-BF₃·OEt₂, the ketene acetal Me₂C=C(OMe)OSiMe₃ delivers enantiopure bicyclic β -amino acid esters.

The 1-azabicyclo[3.2.2]nonane moiety is encountered only rarely in nature¹ and has been accessible in the laboratory with some difficulty.² Substituted 1-azabicyclo[3.2.2]nonanes are of interest as chiral auxiliaries in asymmetric synthesis and act as 5-HAT receptor antagonists for the treatment of inflammatory and central nervous system disorders.³

Recent work has shown that bicyclic α -amino ethers **1-OMe** and **2-OMe** are readily prepared from quincorine and quincoridine,⁴ respectively, in good yield (Scheme 1).⁵ Both cage-expanded [3.2.2]azabicycles are enantiopure and contain four stereogenic centers including the 1*S*-configured basic bridgehead nitrogen. We now describe the Lewis acid assisted displacement of the α -methoxy group by carbon, nitrogen, and sulfur nucleophiles.

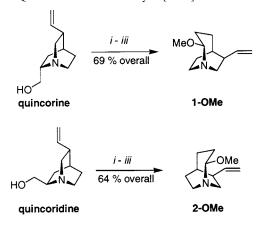
The solvent acetonitrile, which often serves as a solvent for generating carbocations, was unsatisfactory (Table 1,

[†] Department of Organic Chemistry, University of Hannover.

Department of Organic Chemistry, University of Hannover.

Department of Inorganic Chemistry, University of Hannover.

⁽¹⁾ For examples, see: (a) Nomofungin: Ratnayake, A. S.; Yoshida, W. Y.; Mooberry, S. L.; Hemscheidt, T. K. *J. Org. Chem.* **2001**, *66*, 8717. (b) Communesins, Numata, A.; Takahashi, C.; Ito, Y.; Takada, T.; Kawai, K.; Usami, Y.; Matsumura, E.; Imachi, M.; Ito, T.; Hasegawa, T. *Tetrahedron Lett.* **1993**, *34*, 2355.


^{(2) (}a) Ruggles, C. J.; Halpern, A. M. J. Am. Chem. Soc. 1988, 110, 5692. (b) Pearson, W. H.; Walavalkar, R.; Schkeryantz, J. M.; Fang, W.-K.; Blickensdorf, J. D. J. Am. Chem. Soc. 1993, 115, 10183. (c) Vorob'eva, V. Ya.; Mikhlina, E. E.; Turchin, K. F. Yakhontov, L. N. Khim. Geterotsikl. Soedin. 1970, 8, 1037. (d) Yanina, A. D.; Mikhlina, E. E.; Rubtsov, M. V. Zh. Org. Khim. 1966, 2, 1707. (e) Prelog, V.; Cerkovnikov, E. Liebigs. Ann. 1937, 532, 83.

^{(3) (}a) Lowe, J. A., III. PCT Int. Appl. WO 9215585, 1992. (b) Lowe, J. A., III; Drozda, S. E.; Snider, R. M.; Longo, K. P.; Rizzi, J. P. *Bioorg. Med. Chem. Lett.* **1993**, *3*, 921. (c) King, F. D.; Joiner, K. A. Eur. Pat. App. EP 214772, 1987 (US 4798829, 1986). (d) Mueller, R. A.; Partis, R. A.; Deason, J. R. Eur. Pat. Appl. EP 190684, 1986.

⁽⁴⁾ Hoffmann, H. M. R.; Plessner, T.; von Riesen, C. Synlett 1996, 690 and subsequent papers.

⁽⁵⁾ Röper, S.; Frackenpohl, J.; Schrake, O.; Wartchow, R.; Hoffmann, H. M. R. Org. Lett. 2000, 2, 1661.

Scheme 1. Stereospecific Ring Expansion of Quincorine and Ouincoridine to 1-Azabicyclo[3.2.2]nonanes⁵ ^a

 a (i) MsCl (1.3 equiv), NEt₃ (2.0 equiv), DCM, 0 °C \rightarrow rt, 2 h; (ii) LiI, dioxane, 100 °C, 3 h; (iii) AgOBz, MeOH, 60 °C, 16 h.

entry 1), as was nitromethane, an iminium ion stabilizing solvent (Table 1, entry 4).⁶ With an excess of BF₃•OEt₂,

Table 1.

entry	nucleophile (equiv) Lewis acid (equiv)	solvent	T(°C)	yield ^a (%)
1	Me ₃ SiCN (2.5)	MeCN	-40 → rt	0
	BF ₃ ·OEt ₂ (1.0)			
2	Me_3SiCN (2.5)	MeCN	$-40 \rightarrow rt$	15^b
	BF ₃ ·OEt ₂ (1.5)			
3	Me_3SiCN (2.5)	MeCN	$-40 \rightarrow rt$	26^c
	BF ₃ ·OEt ₂ (3.0)			
4	Me_3SiCN (4.0)	$MeNO_2$	$-40 \rightarrow rt$	0^d
	BF ₃ ·OEt ₂ (1.1)			
5	Me_3SiCN (5.0)	DCM	$-40 \rightarrow rt$	83
	BF ₃ ·OEt ₂ (1.1)			

 a Isolated yield. b 8 h, 72%. c 16 h. d 7 d, 25%, yield determined by gas chromatography.

reaction of **1-OMe** with Me₃SiCN in acetonitrile provided the desired α -amino nitrile in only 15–26% yield (Table 1, entries 2 and 3). In contrast, reactions in less polar dichloromethane with BF₃•OEt₂ as Lewis acid⁷ were promising and afforded trifunctional α -amino nitrile⁸ **1-CN** in excellent chemical yield (83%) (Table 1, entry 5). Application of the condition in entry 5 to the trimethylsilyl azide as nucleophile was equally effective (Table 2, entries 3 and 4).

Following these initial experiments, we investigated a range of nucleophiles and the two substrates **1-OMe** and **2-OMe**. Pseudo-enantiomeric⁹ α -amino ether, **2-OMe** de-

Table 2.

Entry	α-Amino ether	Condition ^a	Product	Yield [%]
1	1-OMe	Α	NC NC	83
2	2-OMe	A	CN	68
3	1-OMe	A	N ₃	81
4	2-OMe	A	N ₃	75
5	1-OMe	В		39
6	2-OMe	В	N.	70
7	2-OMe	С		48
8	2-OMe	A		24
9	1-OMe	D	MeO ₂ C	66
10	2-OMe	D	CO ₂ Me	70
11	2-OMe	A	Zs N	59

 a Key: reaction temperature, -40 °C → rt; (A) Me₃Si-nucleophile, BF₃·OEt₂, DCM; (B) Bu₃SnC≡CH, BF₃·OEt₂ ref. 15; (C) C₃H₅MgBr, BF₃·OEt₂, THF; (D) Me₂C=C(OMe)OSiMe₃, TTMPP−BF₃·OEt₂, DCM/MTBE (20:1). 14

rived from quincoridine reacted similarly and was fractionally less efficient than **1-OMe** (Table 2, entry 2). Furthermore, Me₃Si-SPh provided **2-SPh** (59%, Table 2, entry 11).

However, carbon nucleophiles other than simple cyanide ion required further experimentation. Following a literature

3180 Org. Lett., Vol. 4, No. 19, 2002

⁽⁶⁾ For general aspects of preparative carbocation chemistry, see: (a) Yoshida, T., Suga, S. Chem. Eur. J. 2002, 8, 2651–2558. (b) Olah, G. A. Angew. Chem., Int. Ed. Engl. 1995, 34, 1393; Angew. Chem. 1995, 107, 1519 (Nobel lecture). (c) Methoden der Organischen Chemie, Houben-Weyl; Hanack, M., Ed.; Thieme: Stuttgart, 1990; Vol. E19c. (d) Denmark, S. E.; Willson, T. M. In Selectivities in Lewis Acid Promoted Reactions; Schinzer, D., Ed.; Kluwer Academic: Dordrecht, 1989; pp 247–263.

^{(7) (}a) Hiemstra, H.; Fortgens, H. P.; Speckamp, W. N. *Tetrahedron Lett.* **1984**, *25*, 3115. For a review on additions to *N*-acyliminium ions, see: (b) Hiemstra, H.; Speckamp, W. N. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 1047–1082. See also: (c) Schroth, W.; Jahn, U. *J. Prakt. Chem.* **1998**, *340*, 287–299.

protocol, the allyl group was introduced by allylmagnesium bromide and $BF_3 \cdot OEt_2$ (Table 2, entry 7).¹⁰ Attempts to introduce the ethynyl moiety via Mg and Si chemistry were not successful. However, stannylated ethyne and $BF_3 \cdot OEt_2$ furnished quincorine-derived **1-ethyne** (Table 2, entry 5) and also quincoridine-derived **2-ethyne** (Table 2, entry 6).¹¹ Reaction of **2-OMe** with propargyltrimethylsilane and $BF_3 \cdot OEt_2$ furnished the pharmacologically interesting α -allenic amine **2-allene**¹² (Table 2, entry 8).

In an attempt to synthesize bicyclic β -amino acids, we treated silylated ketene acetal Me₂C=C(OMe)OSiMe₃ with α -amino ethers **1-OMe** and **2-OMe** under a variety of conditions including the standard protocol (Table 1, entry 5). No product was observed. Eventually, the reactions were repeated in the presence of TTMPP [tris(trimethoxyphenyl)-phosphine] (Figure 1) and BF₃·OEt₂, which is a push—pull

Figure 1. TTMPP.

combination containing a highly nucleophilic phosphine and useful in Mukaiyama aldol reactions.¹³ We were pleased to isolate both **1-ester** and **2-ester** containing a new quarternary carbon in a respectable 66% and 70% yield.¹⁴

The synthesis of β -amino acid ester **1-ester** (Table 2, entry 9) and **2-ester** (Table 2, entry 10) in enantiopure form is a test of the utility and efficiency of TTMPP-BF₃•OEt₂ in this S_N1 -like reaction. Unlike cyanide and azide ion, the silyl ketene acetal Me₂C=C(OMe)OSiMe₃ is more hindered for effecting the desired carbon-carbon bond formation.

- (8) For a review on α-amino nitriles, see: (a) Enders, D.; Shilvock, J. P. *Chem. Soc. Rev.* **2000**, *29*, 359–373 and references therein. (b) Enders, D.; Kirchhoff, J.; Gerdes, P.; Mannes, D.; Raabe, G.; Runsink, J.; Boche, G.; Marsch, M.; Ahlbrecht, H.; Sommer, H. *Eur. J. Org.* **1998**, *1*, 63. (c) Suginome, M.; Yamamoto, A.; Ito, Y. *J. Chem. Soc.*, *Chem. Commun.* **2002**, 1392.
- (9) Replacement of the vinyl group by hydrogen generates enantiomers. The term *pseudo-enantiomer* is used routinely for related pairs of *Cinchona* alkaloids, e.g., quinine and quinidine.
- (10) Polniaszek, R. P.; Belmont, S. E. *J. Org. Chem.* **1991**, *56*, 4868. (11) (a) Zhai, D.; Zhai, W.; Williams, R. M. *J. Am. Chem. Soc.* **1988**, *110*, 2501. (b) Yamamoto, Y.; Schmid, M. *J. Chem. Soc.*, *Chem. Commun.* **1989**, 1310.
- (12) Esch, P. M.; Hiemstra, H.; Speckamp, W. N. Tetrahedron Lett. 1988, 29, 367.
- (13) Hartung, I. V.; Hoffmann, H. M. R. Submitted for publication. TTMPP is also sufficiently basic (pK_a 11.2) for desilylation of ketene acetal in situ.
- (14) A solution of α -amino ether **1-OMe** (77 mg, 0.43 mmol) and TTMPP (46 mg, 20 mol %) in absolute DCM/MTBE (3 mL, 20:1) was cooled to -40 °C. The ketene acetal (0.22 mL, 1.06 mmol, 2.5 equiv) and then BF₃·OEt₂ (66 μ L, 0.51 mmol, 1.2 equiv) were added. The mixture was allowed to warm to room temperature. After being stirred for 3 h, the reaction mixture was treated with saturated aqueous NaHCO₃ and extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, evaporated, and purified by column chromatography (PE/MTBE 1:1) to furnish **1-ester** (66%, 70 mg).

α-Amino ethers, which are trifunctional, with functionality other than vinyl at C6 (ethyl, ethynyl and cross-coupled ethynyls, oxo, ester) are also known.⁵

The configuration and conformation of 1-azabicyclo[3.2.2]-nonanes were determined by NMR and X-ray analysis. The configuration at C2 could be assigned by NOE interactions of proton H2, with neighboring syn-axial like protons: see interaction "a" in **1-CN** and **2-ester** (Figure 2).

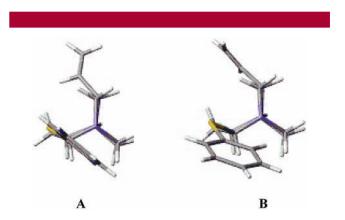
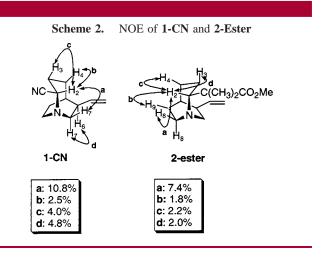



Figure 2. X-ray structure of 2-SPh.¹⁶

X-ray analysis for **2-SPh** showed the asymmetric unit to contain two conformers **A** and **B**, approximately related by a C_2 operation. Major differences are found for torsion angles N1–C2–S–Ph (-61.5 for **A** and -78.0 for **B**) and for C11–C10–C6–C7 (14.1 for **A** and 103.8 for **B**). Conformational mobility ("butterfly conformers") has also been observed for nomofungin^{1a} and may be relevant to biological activity (Scheme 2).

Mechanistic Aspects. While reactions of carbocations are often difficult to control, especially with respect to stereochemistry, the configuration at carbon C2 is retained throughout the reaction. Equilibration between the postulated chiral cations 1^+ and 2^+ is not observed (Scheme 3).

Moreover, there is also remarkable stereocontrol of subsequent external nucleophilic attack, which proceeds

Org. Lett., Vol. 4, No. 19, 2002

Scheme 3. Distinct Bridgehead Iminium Ions 1⁺ and 2⁺ and Their Stereospecific Capture by Nucleophiles

quasi-equatorially. The pyramidalized cationic intermediate can be regarded as a strained nonplanar cyclic iminium ion, ¹⁷ in a formal violation of the Bredt rule. These preparative findings mirror earlier results of Scheme 1, where both

quincorine and quincoridine fully retained their stereochemical integrity, giving the ring expanded α -amino ethers **1-OMe** and respectively, **2-OMe**. The energy barrier to rotation and bridge flipping of our bridgehead iminium ions must be substantial.¹⁸

In conclusion, bicyclic α -amino ethers **1-OMe** and **2-OMe** have been elaborated by Lewis acid promoted reactions with a variety of nucleophiles in stereocontrolled fashion. The resulting azabicyclics are enantiopure and readily available as pseudo-enantiomeric pairs. α -Amino nitriles **1-CN** and **2-CN** are new Strecker-type intermediates for the synthesis of α -amino acids, whereas new β -amino acid esters were prepared directly by two-carbon homologation.

Acknowledgment. We thank Ulrike Eggert and Lars Ole Haustedt for their help, Buchler GmbH Braunschweig for a gift of quincorine and quincoridine, and the Fonds der Chemischen Industrie for continued support of our work.

Supporting Information Available: X-ray data for **2-SPh** and spectroscopic data for each new compound. This material is available free of charge via the Internet at http://pubs.acs.org.

OL026342M

(15) Work up with KF/water increased the yield from 39 to 70%

3182 Org. Lett., Vol. 4, No. 19, 2002

⁽¹⁶⁾ Cambridge Crystallographic Data Centre CCDC 185368. The X-ray structure was plotted by Molekel 4.1. Flükiger, H. P.; Lüthi, H. P.; Portmann, S.; Weber, J. *Swiss Center for Scientific Computing*; Manno: Switzerland, 2000–2001.

⁽¹⁷⁾ For a leading reference on iminium ions, see: Mayr, H.; Ofial, A. R.; Sauer, J.; Schmied, B. Eur. J. Org. Chem. **2000**, 2013.

⁽¹⁸⁾ E and Z isomers of [3.2.1]bicyclic imines with nitrogen in the nonbridgehead position: (a) Sheridan, R. S.; Ganzer, G. A. J. Am. Chem. Soc. 1983, 105, 6158. (b) Radziszewski, J. G.; Downing, J. W.; Wentrup, C.; Kaszynski, P.; Jawdosiuk, M.; Michl, J. J. Am. Chem. Soc. 1985, 107, 2799